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Intel 4004, 1971
1 core, no cache

Intel Nehalem 
EX, 2009
8c, 24MB cache

23K 10um 
transistors

What did we do with 
those 2B+ transistors?
2.3B 45nm 
transistors



  

10x: architectural innovations
100x: transistor scaling1000x

speedup

20
years

[Borkar 2011]



  

20 years of architectural innovation 
for a 10x speedup

[Borkar 2011]



  

Every technology generation brings:

Dennard scaling

50% area reduction

40% speed increase

50% less power consumption

[Borkar 2011]



  

is no more
Dennard scaling
Leakage current grows exponentially with ↓V

th

To mitigate leakage power, threshold 
voltage is now increasing, limiting speed

Result: below 130nm power 
density grows every generation

[Borkar 2011]

Further, supply voltage scaling is 
severely restricted by process variability



  

growing power density +
fixed power budgets =
increasingly large portions of 

dark silicon
as technology scales

[Borkar 2011]



  

Fighting dark silicon
Process innovations
(!= traditional scaling)
beyond this talk's scope

Increase locality and 
reduce bandwidth per op
how inefficient are we right now?

[Borkar 2011]



  

H.264 energy breakdown

“Magic” is a highly specialized implementation
yet it only achieves

up to 50% of “real” (FU and RF) work
[Hameed 2010]
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Part II
Multicore Scalability



  

Memory Controller
Scheduling & Placement

Non-Uniform Caches
Latency reduction on

last-level caches

Memory Hierarchy
Innovations

Performance gains with little or no transistor expense



  

Memory Controller Scheduling

[Mutlu 2007]

Per bank, only one row 
can be accessed at any 
given time
Every access must go 
through the row buffer
Consecutive accesses to 
the same row are thus 
faster
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Memory Controller Scheduling

[Mutlu 2007]

Traditional solution: FR-FCFS
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row

closed

row

conflict

Maximizes row hits 
by prioritizing 
column accesses 
over row ones

Is unfair: threads with 
infrequent accesses of 

low row locality are 
severely slowed down



  

Memory Controller Scheduling

[Mutlu 2007]

Goal: equalize memory-related 
slowdown across threads

Estimate slowdown of each thread
Compute system unfairness
Prioritize commands based on the 
slowdowns of their threadsTe

ch
ni

qu
e



  

Memory Controller Placement

[Abts 2009]

Pin count: many cores,
few controllers
Uniform spread of traffic
across ports
Physical considerations,
e.g. thermalC

on
st

ra
in

ts

Lowest contention (<33% than row07)
Lowest latency & latency variance

Better thermal distribution than diag. X

Best placement: diamond

Best routing: Class-Based
XY request, YX response packets



  

Non-Uniform Caches (NUCA)

[Kim 2002]

Non-Uniform caches
Small, fast banks over a switched 
network

Good average latency

Uniform caches
High latency due to wire delay

Aggressive sub-banking not enough

Port-limited

Challenge: efficient bank partitioning in CMPs



  

NUCA slicing in CMPs

[Lee 2011]

Utility-based dynamic partitioning
Distance-aware borrowing from neighbors
Address-based distributed directory

ESP-NUCA
Token-based directory
Limited per-core priv slices

Elastic CC
Address-based split of 
directory & data

C
lo

ud
C
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he

Both: Utility-based spilling of replicas/victims

[Merino 2010] [Herrero 2010]

OS-level allocation: Slice = Phys. PN % (nr. of slices) 
[Cho 2006]



  

Multicore Scalability

[Baumann 2009]

Coherence
may be too costly to maintain

Where is the bottleneck?

Heterogeneity
could become too hard to manage

e.g. NUMA

&



  

Communication Models
Coherent shared memory

Entirely distributed
message-passing across cores

Hybrid
e.g. scale-out (coherence only

among groups of cores) [Lofti-Kamran 2012]

Scratchpad
e.g. local stores in the IBM Cell



  

Time to give up 

coherence?
It may make sense
Cores are already nodes in a network – why not just 
exchange messages?
Conventional wisdom says coherence cannot scale

we better have a very good reason
Most existing code relies on coherence
Plenty of man-years of optimizations
Many programmers' brains would have to be rewired

but

[Baumann 2009]

[Martin 2012]



  

- But my program doesn't scale today...

Is it the algorithm, the 
implementation, or coherence? 
Software bottlenecks often to blame
7 system applications shown to scale when using 
standard parallel programming techniques

Scalable locks do exist and are just as simple as non-
scalable ticket locks (e.g. Linux spin locks)

[Boyd-Wickizer 2010]

Too many readers will always cause trouble
Though lockless mechanisms like RCU are an increasingly 
popular alternative to most Reader-Writer locks

[Boyd-Wickizer 2012]

[Clements 2012]



  

It seems coherence will live on
Coherence can scale
Judicious choices can lead to slow growth of traffic, 
storage, latency and energy with core count [Martin 2012]

Likely to coexist with other models
Research on these issues still at its infancy

[Dashti 2013]

Coherence won't solve all problems
Heterogeneity is a challenge
Problems here seem less threatening, but they exist, 
e.g. management of memory-controller traffic on NUMA 
systems



  

Part III
Heterogeneous

Architectures
and beyond



  

Performance and energy efficiency require

Specialization via Heterogeneity

[Cong 2012]

Flexible-core CMPs
~1.5x speedup, ~2x power savings over GP
Granularity of processors determined at runtime
Pose interesting challenge to thread schedulers [Kim 2007]

Accelerator-rich CMPs
~50X speedup, ~20X energy improv.
Still unclear to what extent general-purpose computing 
could benefit: opportunity cost of integrating 
accelerators may be prohibitive

Greendroid
Synthesis of code segments into “conservation cores”
~No speedup, ~16X energy savings for segments 

[Goulding-Hotta 2011]



  

Heterogeneity
is not the only way out

Computational Sprinting
Leverage dark silicon to provide short 
bursts of intense computation by 
exploiting thermal capacitance

6x responsiveness gain, 5% less energy

Smart sprint pacing can yield 
performance improvements

[Raghavan 2013]

[Esmaeilzadeh 2012]
Disciplined Approximate Computing
Trade off accuracy for energy
Vision, clustering, etc. don't need 100% accuracy
2x energy savings, average error rate 3-10%, peak 80%



  

Conclusion



  

Conclusion
In the post-Dennard scaling era,

performance
is determined by energy efficiency

Future computer systems will be

parallel & heterogeneous
Various GPCPUs will coexist with

custom logic, GPGPUs and even FPGAs

[Consortium 2013] [Chung 2010]



  

Thanks

Frankenchip by  Ryan Johnson

http://hpts.ws/papers/2009/session5/johnson.pdf
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